Stereospecificity in the Side-chain Formation of 24β-Ethylsterols in Tissue Cultures of *Trichosanthes kirilowii*

Shujiro Seo,*a Atsuko Uomori,a Yohko Yoshimura,a Ushio Sankawa,^b Yutaka Ebizuka,^b Haruo Seto,^c and Ken′ichi Takeda^a

^a Shionogi Research Laboratories, Shionogi & Co. Ltd., Fukushima-ku, Osaka 553, Japan

• Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Institute of Applied Microbiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

In the biosynthesis of 22-dihydrochondrillasterol (4) from $[2^{-13}C,2^{-2}H_3]$ acetate and $[1,2^{-13}C_2]$ acetate in cell cultures of *Trichosanthes kirilowii*, the hydrogen atom coming from C-4 of mevalonic acid was revealed by ^{13}C n.m.r. spectroscopy to be located at C-24, and that the protonation at C-25 of the 24 β -ethyl- Δ^{25} precursor, to form the saturated side chain of (4), was most likely to occur from the *Re*-face.

The biosynthesis of phytosterols from acetic acid and mevalonic acid (MVA) in photosynthetic organisms has been well documented¹ and the evolution of the alkylation mechanism to achieve different chiralities of the alkyl group at C-24 is becoming better understood.²

Recently, we confirmed by ¹³C n.m.r. spectroscopy, in cell cultures of higher plants, the distribution of carbon and hydrogen atoms originating from acetic acid in the biosynthesis of a 24α -ethylsterol, sitosterol, and found that the 24-H of cycloartenol, originating from 4-H of MVA, was lost during the side chain formation.³

The seeds of some *Cucurbitaceae* plants, such as *C. pepo* and *Trichosanthes kirilowii*, are known to contain principally 24β -ethylsterols.⁴ However, tissues from the mature plants mainly synthesize 24α -ethylsterols, the highly evolved forms.⁵ This apparent evolutionary recapitulation during the development of plants prompted us to investigate the mechanism for alkylation at C-24. The callus, which we induced from the aerial parts of *T. kirilowii* Maxim. var. *japonica*, produced mainly the 24β -ethylsterols, 22-dihydrochondrillasterol (4)

Scheme 1. Proposed mechanism for 24β -ethyl side-chain formation. **A**: Carbon derived from C-4 and C-6 of MVA, \triangle : carbon derived from C-2 of MVA. SAM = S-adenosyl methionine.

and 22-dihydro-25-dehydrochondrillasterol^{\dagger} (3). The mechanism of side-chain formation of the 24 β -ethylsterol, poriferasterol, has been studied in *Ochromonas malhamensis*,

Scheme 2. a: \triangle , \blacktriangle indicate the carbon from C-2 of $[2^{-13}C, 2^{-}D_3]$ acetate (1a) and, more specifically, \triangle also shows the carbon from C-2 of MVA. b: \bigcirc , — indicate singly and doubly labelled carbon from $[1,2^{-13}C_2]$ acetate (1b), respectively.

[†] Nomenclature: 22-dihydrochondrillasterol (**4**) = (24*S*)-24-ethyl-5αcholest-7-en-3β-ol; 22-dihydro-25-dehydrochondrillasterol (**3**) = (24*S*)-24-ethyl-5α-cholesta-7,25-dien-3β-ol; 24-methylenecycloartanol (**2**) = 9,19-cyclo-4,4,14,24-tetramethyl-5α,9β,14α-cholest-24(28)-en-3β-ol.

Table 1. ¹³C N.m.r. data^a for 24-methylenecycloartanol (2), 22-dihydro-25-dehydrochondrillasterol (3), and 22-dihydrochondrillasterol (4)^b biosynthesized from $[2^{-13}C, 2^{-2}H_3]$ acetate (1a) and $[1, 2^{-13}C_2]$ acetate (1b) in tissue cultures of *Trichosanthes kirilowii* Maxim. var. *japonica*.

	$\delta_{\rm C}$	(2b) J _{CC}	d ₁	$(2a) \\ {}^{\scriptscriptstyle 1}\!\Delta \delta_C({}^{\scriptscriptstyle 2}\!H) \\ d_2$	d ₃	δ_{C}	(3b) J _{CC}	d ₁	$(3a) \\ {}^{\scriptscriptstyle 1}\Delta \delta_C({}^{\scriptscriptstyle 2}H) \\ d_2$	d3	δ_C	(4b) J _{CC}	d ₁	$(\textbf{4a}) \\ 1\Delta \delta_C(^2H) \\ d_2$	d ₃
C-1°	31.98	s	-0.33 -0.44	-0.77		37.15	s	-0.42	-0.80		37.16	s	e	-0.80	
C-2	30.41	37				31.47	36				31.47	36			
C-3c	78.85	37	-0.54			71.05	36				71.05	36			
C-4	40.50	36				37.98	s				37.97	s			
C-5°	47.13	35	-0.64			40.26	34	-0.54			40.27	34	-0.55		
C-6	21.13	35				29.66	34				29.67	34			
C-7°	26.02f	s	-0.41	e		117.43	s	-0.34			117.43	s	-0.35		
C-8	48.00	s				139.60	s				139.59	s			
C-9°	20.02	43	$(-0.09)^{d}$			49.46	34				49.47	34			
C-10	26.10	12				34.21	37				34.21	36			
C-11	26.50 ^f	43				21.56	34				21.57	34			
C-12	32.92 ^f	35				39.58	36				39.58	36			
C-13c	45.32	35	$(-0.09)^{d}$			43.39	36	(-0.09) ^d			43.38	36	$(-0.08)^{d}$		
C-14	48.83	s				55.04	s				55.05	s			
C-15°	35.58 ^f	s	-0.39	-0.77		22.96	s	-0.35			22.99	s	-0.35		
C-16	28.17^{f}	33				27.89	33				27.97	33			
C-17c	52.29	33	$(-0.11)^{d}$			56.09	33	$(-0.11)^{d}$			56.08	33	(-0.11) ^d		
C-18 ^c	18.04	s	-0.31	-0.60	-0.85	11.84	s	-0.28	-0.57	-0.83	11.85	S	-0.31	-0.57	-0.88
C-19°	29.90	12	-0.44	-0.86		13.03	37	-0.26	-0.57		13.04	36	-0.31	-0.60	
C-20	36.13	35				35.99	35				36.73	35			
C-21c	18.32	35	e	e	e	18.77	35	-0.31	-0.61	e	18.98	35	-0.32	-0.61	-0.92
C-22°	35.02	S	-0.42	-0.80		33.63	s	-0.41	-0.82		33.88	S	-0.44	-0.83	
C-23	31.33	41				29.50	34				26.52	35			
C-24°	156.92	41	$(-0.03)^{d}$			49.53	34	-0.53			46.07	35	-0.61		
C-25	33.82	35				147.53	72				28.97	35			
C-26 ^c	22.01	35	-0.31	-0.60	e	111.39	72	-0.29	-0.56		19.61	s	-0.31	e	
C-27°	21.88	S	-0.31	-0.61		17.78	S	-0.28	-0.54		18.98	35	-0.32	-0.61	
C-28	105.94					26.53					23.01				
C-29						12.07					12.33				
C-30c	25.45	S	-0.31	-0.61											
C-31°	14.01	36	-0.29	-0.57	-0.88										
C-32°	19.33	S	-0.29	-0.58	-0.93										

^a ¹³C-{¹H}{²H} N.m.r. spectra were recorded on a JEOL GX-400 spectrometer in the ¹H and ²H decoupling mode at 100 MHz in [²H]chloroform (δ_C 77.000). J_{CC} values (in Hz) were obtained from ¹³C-{¹H} n.m.r. spectra recorded on a Varian XL-200 n.m.r. spectrometer at 50.309 MHz in the ¹H decoupling mode in [²H]chloroform using tetramethylsilane as an internal standard (δ_C 0). A figure in the J_{CC} columns indicates ¹³C-¹³C doubly labelled carbon and s indicates singly labelled carbon. Accuracies of δ_C and J_{CC} are ±0.03 p.p.m. and ±2 Hz, respectively. ^b This compound contained about 20% of 24 α -epimer. ^c Carbons originating from C-2 of acetate. ^d These are ² $\Delta\delta_C$ (²H) values. ^e These signals were not observed due to overlapping with other signals. ^f Reported assignments of these carbon signals on cycloartanol derivatives⁹ are revised by 2D INADEQUATE ¹³C n.m.r. method.

in which the hydride shift from C-24 to C-25 occurs on the Si-face of the Δ^{24} precursor double bond.⁶

Here we report on the stereospecific hydride shifts and protonation at C-25 throughout the 24β -ethyl side-chain formation of (4) in cell cultures of *T. kirilowii* fed with [2-¹³C, 2-²H₃]acetate and [1,2-¹³C₂]acetate, based on the labelling pattern observed by ¹³C n.m.r. spectroscopy.

The callus was induced from the aerial parts of *T. kirilowii* on a Linsmaier and Skoog medium fortified with 2,4-D $||(10^{-6} \text{ M})|$ and kinetin (0.02 p.p.m.), and subcultured every four weeks under the same conditions.

Sodium $[2-{}^{13}C, 2-{}^{2}H_{3}]$ acetate (1a)[‡] and sodium $[1, 2-{}^{13}C_{2}]$ acetate (1b)[§] were administered independently for 12

days to the suspension cultures of this callus. Compounds (3), (4), and 24-methylenecycloartanol† (2) were isolated from the cells and the labelling patterns were observed by 50 MHz ¹³C-{¹H} and 100 MHz ¹³C-{¹H}{²H} n.m.r. spectroscopy. ¹³C N.m.r. signal assignments are shown in Table 1. C-26 (the pro-*R* methyl group at C-25) and C-27 (the pro-*S* methyl group at C-25) of (4) were assigned by comparison with those of clionasterol in our previous report.⁷

As shown in Table 1, ¹³C signals at C-24 in (**3a**) and (**4a**) ($\delta_{\rm C}$ 49.52 and 46.07, respectively), accompanied the signals shifted by the α -deuterium effect [${}^{1}\Delta\delta_{\rm C}({}^{2}{\rm H}) - 0.53$ and -0.61]. These results indicate that the deuterium atom derived from C-4 of MVA is located at C-24. The plausible mechanism for 24 β -ethyl side-chain formation deduced from our results is shown in Scheme 1. The first hydride (deuteride) shift (**a**) \rightarrow (**b**) \rightarrow (**c**) takes place on the *Re*-face of the original double bond and gives the side chain (**c**) in which the methyl group at C-25, originating from C-2 of MVA, becomes oriented to the pro-*S* position as reported by Arigoni for yeast.⁸ The second methylation onto the $\Delta^{24(28)}$ double bond

^{2,4-}D = 2,4-dichlorophenoxyacetic acid.

^{‡ 1014} mg of acetate in 7.8 l of medium.

[§] A mixture of labelled acetate (714 mg) and non-labelled acetate (1428 mg) in 10.2 l of medium.

gives a cationic intermediate (d), and the hydrogen (deuterium) at C-25 migrates back to C-24. Then a hydrogen (deuterium) elimination from the methyl group at C-25 arising from C-6 of MVA gives the side-chain (e). The last reduction occurs at C-25 from the *Re*-face of the $\Delta^{25(26)}$ double bond and gives (f).

Evidence for this mechanism came from the following findings: (i) a β -deuterium shifted signal at C-24 [δ_C 156.92, $^2\Delta\delta_C(^2H) - 0.03$] of (2a); (ii) the pro-*S* (C-27) and pro-*R* (C-26) methyls at C-25 of (2b) appearing as a singlet and a doublet (*J* 35 Hz), respectively; (iii) (3a) having C-27 labelled by $^{13}CD_2H$ [δ_C 17.78, $^1\Delta\delta_C(^2H) - 0.54$]; (iv) a singlet C-27 and a doublet C-26 (*J* 72 Hz) in (3b); (v) (4b) having a singlet C-26 (δ_C 19.61) and a doublet C-27 (δ_c 18.98, *J* 35 Hz), the latter being labelled by $^{13}CD_2H$ in (4a). The two deuterium atoms at C-22 of (3a) and (4a) clearly indicate that these sterols were not formed primarily through a $\Delta^{22(23)}$ precursor.

The ²H and ¹³C distributions in the tetracyclic skeleton of (3) and (4) were similar to those of the 24α -ethylsterol, sitosterol.³ 1,2-Methyl migration (C-18 from C-14) and 1,2-hydride shifts (20-H from C-17 and 17-H from C-13) during the cyclization from epoxysqualene were confirmed by the singlet signals at C-14 and C-18 in (2b), (3b) and (4b), and by the β -deuterium isotopically shifted signals at C-17 and C-13 in (2a), (3a), and (4a). 1,2-Methyl migration (C-32 from C-8) and 1,2-hydride shift (8-H from C-9) were also verified by the singlets, C-8 and C-32, in (2b), and the β -deuterium isotopically shifted signal at C-9 [$\delta_{\rm C}$ 20.02, $^2\Delta\delta_{\rm C}(^2{\rm H}) - 0.09$] of (2a). Thus, the 8-2H observed in (2a) is evidence for cycloartenol, not lanosterol, being the primary cyclization product from epoxysqualene. The two deuterium atoms at C-19 of (3a) and (4a) agree with the intermediacy of cycloartenol. The retention of 5-2H in (3a) and (4a) demonstrate that Δ^7 was not formed *via* a $\Delta^{5.7}$ precursor.

We thank Dr. Y. Nanjo of Aburahi Laboratories, Shionogi

& Co., Ltd., for supplying the *T. kirilowii* plants and Dr. H. Tada of the same company for encouragement.

Received, 13th August 1987; Com. 1194

References

- See reviews such as T. W. Goodwin, 'New Comprehensive Biochemistry,' eds. A. Neuberger and L. L. M. Van Deener, Elsevier, Amsterdam, vol. 12, 1985, ch. 7; T. W. Goodwin, 'Biosynthesis of Isoprenoid Compounds,' eds. J. W. Porter and S. L. Spurgeon, Wiley, New York, vol. 1, 1981, p. 443; E. Caspi, *Tetrahedron*, 1986, 42, 3.
- 2 D. M. Harrison, Natural Product Reports, 1985, 2, 526; S. Seo, A. Uomori, Y. Yoshimura, and K. Takeda, J. Chem. Soc., Chem. Commun., 1984, 1174; A. Uomori, S. Seo, Y. Yoshimura, and K. Takeda, *ibid.*, 1984, 1176; L. Cattel, G. Balliano, F. Viola, and O. Caputo, Planta Medica, 1980, 38, 112.
- 3 S. Seo, U. Sankawa, H. Seto, A. Uomori, Y. Yoshimura, Y. Ebizuka, H. Noguchi, and K. Takeda, J. Chem. Soc., Chem. Commun., 1986, 1139.
- 4 W. Sucrow, M. Slopianka, and H. W. Kircher, *Phytochemistry*, 1976, **15**, 1533; T. Akihisa, S. Thakur, F. U. Rosenstein, and T. Matsumoto, *Lipids*, 1986, **21**, 39.
- 5 W. R. Nes, K. Krevitz, J. Joseph, W. D. Nes, B. Harris, and G. F. Gibbons, *Lipids*, 1977, **12**, 511; T. Itoh, K. Yoshida, T. Tamura, and T. Matsumoto, *Phytochemistry*, 1982, **21**, 727.
- 6 F. Nicotra, F. Ronchetti, G. Russo, L. Toma, P. Gariboldi, B. M. Ranzi, J. Chem. Soc., Chem. Commun., 1984, 383; F. Nicotra, F. Ronchetti, G. Russo, L. Toma, and B. M. Ranzi, Mag. Reson. Chem., 1985, 23, 134.
- 7 S. Seo, A. Uomori, Y. Yoshimura, and K. Takeda, J. Am. Chem. Soc., 1983, 105, 6343.
- 8 D. Arigoni, 'Molecular Interaction and Activity in Protein,' Chiba Found Symp., 1978, **60**, 243; D. Arigoni, personal communication.
- 9 F. Khuong-Huu, M. Sangare, V. M. Chari, A. Bekaert, M. Devys, M. Barbier, and G. Lukacs, *Tetrahedron Lett.*, 1975, 1787.