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In the biosynthesis of 22-dihydrochondrillasterol (4) from [2-13C,2-2H;]acetate and [1,2-13C,]acetate in cell cuitures of
Trichosanthes kirilowii, the hydrogen atom coming from C-4 of mevalonic acid was revealed by 3C n.m.r.
spectroscopy to be located at C-24, and that the protonation at C-25 of the 24(3-ethyl-A25 precursor, to form the
saturated side chain of (4), was most likely to occur from the Re-face.

The biosynthesis of phytosterols from acetic acid and meval-
onic acid (MVA) in photosynthetic organisms has been well
documented! and the evolution of the alkylation mechanism
to achieve different chiralities of the alkyl group at C-24 is
becoming better understood.?

Recently, we confirmed by 13C n.m.r. spectroscopy, in cell
cultures of higher plants, the distribution of carbon and
hydrogen atoms originating from acetic acid in the biosyn-
thesis of a 24a-ethylsterol, sitosterol, and found that the 24-H
of cycloartenol, originating from 4-H of MV A, was lost during
the side chain formation.3

The seeds of some Cucurbitaceae plants, such as C. pepo
and Trichosanthes kirilowii, are known to contain principally
24B-ethylsterols.# However, tissues from the mature plants
mainly synthesize 24x-ethylsterols, the highly evolved forms.5
This apparent evolutionary recapitulation during the develop-
ment of plants prompted us to investigate the mechanism for
alkylation at C-24. The callus, which we induced from the
aerial parts of T. kirilowii Maxim. var. japonica, produced
mainly the 24fB-ethylsterols, 22-dihydrochondrillasterol (4)

D,H D,H
D, y Me_ D ,A
s /26 SAM s e
% 25
R 27 R
Dy Ds3
(a) (b)

D

7
‘\ZA—DZH (pro-S)
R 26 %—Dj3 (pro-R)

(d) (c)

DM D,H (pro-R)

D 27 D ZGA
~ 3 ~ 4 DoH (pro-S
% )_m’ 2 (P )
D H
R 5 R
(e) (t)

Scheme 1. Proposed mechanism for 24f3-ethyl side-chain formation.
A : Carbon derived from C-4 and C-6 of MVA, A: carbon derived
from C-2 of MVA. SAM = S-adenosyl methionine.

and  22-dihydro-25-dehydrochondrillasterolt  (3). The
mechanism of side-chain formation of the 24f-ethylsterol,
poriferasterol, has been studied in Ochromonas malhamensis,

,’DHB Dy D

(1a), (1b) MVA ¥

(4a), (4b)

Scheme 2. a: A, A indicate the carbon from C-2 of [2-13C, 2-D;]
acetate (1a) and, more specifically, A also shows the carbon from C-2
of MVA. b: @, = indicate singly and doubly labelled carbon from
[1,2-13C,] acetate (1b), respectively.

+ Nomenclature: 22-dihydrochondrillasterol (4) = (245)-24-ethyl-5o-
cholest-7-en-38-0l; 22-dihydro-25-dehydrochondrillasterol  (3) =
(245)-24-ethyi-5a-cholesta-7,25-dien-38-ol; 24-methylenecycloar-
tanol (2) = 9,19-cyclo-4,4,14,24-tetramethyl-5a,98,14a-cholest-
24(28)-en-3B-ol.



J. CHEM. SOC., CHEM. COMMUN., 1987 1877

Table 1. '3C N.m.r. data2 for 24-methylenecycloartanol (2), 22-dihydro-25-dehydrochondrillasterol (3), and 22-dihydrochondrillasterol

(4)> biosynthesized from [2-13C,2-2H;Jacetate (la) and [1,2-13C;Jacetate (1b) in tissue cultures of Trichosanthes kirilowii
Maxim. var. japonica.
(2b) (2a) (3b) (3a) (4b) (4a)
d¢  Jec 1A8¢(2H) 9  Jec 1AS(?H) 8 Jee 1A6¢(*H)
dl dZ d3 dl d2 d3 dl d2 d3
C-1¢ 31.98 s —-0.33 -0.77 37.15 S -0.42 -0.80 37.16 s e -0.80
—-0.44

C-2 3041 37 31.47 36 3147 36
C-3¢ 78.85 37 -0.54 71.05 36 71.05 36
C-4 40.50 36 37.98 s 37.97 s
C-5e¢ 47.13 35 —0.64 40.26 34 -0.54 40.27 34 -0.55
C-6 21.13 35 29.66 34 29.67 34
C-7¢ 26.02¢ s -0.41 c 117.43 S -0.34 117.43 S -0.35
C-8 48.00 s 139.60 s 139.59 S
C-9¢ 2002 43 (—0.09)¢ 49.46 34 49.47 34
C-10 26.10 12 3421 37 3421 36
C-11  26.507 43 21.56 34 21.57 34
C-12 3292t 35 39.58 36 39.58 36
C-13¢ 4532 35 (-0.09)¢ 4339 36 (-0.09)¢ 4338 36 (—0.08)
C-14  48.83 s 55.04 S 55.05 s
C-15¢  35.58" s -0.39 -0.77 22.96 s -0.35 22.99 s -0.35
C-16  28.17f 33 27.89 33 27.97 33
C-17¢ 5229 33 (-0.11)¢ 56.09 33 (-0.11)? 56.08 33 (—0.11)¢
C-18< 18.04 s -0.31 —-0.60 -0.85 11.84 S -0.28 -0.57 -0.83 11.85 S -0.31 -0.57 -0.88
C-19¢ 2990 12 —0.44 ~0.86 13.03 37 -0.26 -0.57 13.04 36 -0.31 -0.60
C-20 36.13 35 3599 35 36.73 35
C-21¢ 1832 35 e e e 18.77 35 -0.31 ~0.61 e 18.98 35 -0.32 -0.61 -0.92
C-22¢ 3502 s —0.42 —0.80 3363 s —0.41 -0.82 3388 s -0.44 -0.83
C-23 3133 41 29.50 34 26.52 35
C-24¢ 156.92 41 (—0.03)¢ 49.53 34 -0.53 46.07 35 -0.61
C-25 338 35 14753 72 2897 35
C-26¢ 2201 35 -0.31 —0.60 c 111.39 72 -0.29 —0.56 19.61 s -0.31 €
C-27¢ 21.88 s -0.31 -0.61 17.78 s -0.28 —-0.54 1898 35 -0.32 —-0.61
C-28 105.94 26.53 23.01
C-29 12.07 12.33
C-30c  25.45 S -0.31 ~0.61
C-31¢ 1401 36 —-0.29 -0.57 -0.88
C-32¢ 19.33 s -0.29 -0.58 -0.93

a 3C-{'H} {2H} N.m.r. spectra were recorded on a JEOL GX-400 spectrometer in the 'H and 2H decoupling mode at 100 MHz in {2H]chloroform
(d¢ 77.000). Jec values (in Hz) were obtained from 13C-{'H} n.m.r. spectra recorded on a Varian XL-200 n.m.r.
spectrometer at 50.309 MHz in the 'H decoupling mode in [2H]chloroform using tetramethylsilane as an internal standard (8¢ 0). A figure
in the Jee columns indicates !3C-13C doubly labelled carbon and s indicates singly labelled carbon. Accuracies of 8 and Joc are
+0.03 p.p.m. and *2 Hz, respectively. ® This compound contained about 20% of 24x-epimer. < Carbons originating from C-2 of acetate.
d These are 2Ad-(2H) values. ¢ These signals were not observed due to overlapping with other signals. f Reported assignments of these
carbon signals on cycloartanol derivatives® are revised by 2D INADEQUATE !3C n.m.r. method.

in which the hydride shift from C-24 to C-25 occurs on the
Si-face of the A24 precursor double bond.®

Here we report on the stereospecific hydride shifts and
protonation at C-25 throughout the 24f3-ethyl side-chain
formation of (4) in cell cultures of 7. kirilowii fed with [2-13C,
2-2H,)acetate and [1,2-13C;|acetate, based on the labelling
pattern observed by 13C n.m.r. spectroscopy.

The callus was induced from the aerial parts of T. kirilowii
on a Linsmaier and Skoog medium fortified with 2,4-D||
(10— M) and kinetin (0.02 p.p.m.), and subcultured every four
weeks under the same conditions.

Sodium [2-13C,2-2Hj]acetate (la)i and sodium [1,2-
13C,Jacetate (1b)§ were administered independently for 12

| 2,4-D = 2.4-dichlorophenoxyacetic acid.

1 1014 mg of acetate in 7.8 1 of medium.

§ A mixture of labelled acetate (714 mg) and non-labelled acetate
(1428 mg) in 10.2 | of medium.

days to the suspension cultures of this callus. Compounds (3),
(4), and 24-methylenecycloartanolt (2) were isolated from the
cells and the labelling patterns were observed by 50 MHz
13C-{1H} and 100 MHz 13C-{!H}{2H} n.m.r. spectroscopy.
13C N.m.r. signal assignments are shown in Table 1. C-26 (the
pro-R methyl group at C-25) and C-27 (the pro-S methyl group
at C-25) of (4) were assigned by comparison with those of
clionasterol in our previous report.”

As shown in Table 1, 13C signals at C-24 in (3a) and (4a) (8¢
49.52 and 46.07, respectively), accompanied the signals
shifted by the a-deuterium effect [1AS-(2H) —0.53 and
~0.61]. These results indicate that the deuterium atom
derived from C-4 of MVA is located at C-24. The plausible
mechanism for 24f3-ethyl side-chain formation deduced from
our results is shown in Scheme 1. The first hydride (deuteride)
shift (a) — (b) — (c) takes place on the Re-face of the original
double bond and gives the side chain (¢) in which the methyl
group at C-25, originating from C-2 of MVA, becomes
oriented to the pro-S position as reported by Arigoni for
yeast.8 The second methylation onto the A24(28) double bond
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gives a cationic intermediate (d), and the hydrogen
(deuterium) at C-25 migrates back to C-24. Then a hydrogen
(deuterium) elimination from the methyl group at C-25 arising
from C-6 of MVA gives the side-chain (e). The last reduction
occurs at C-25 from the Re-face of the A25(26) double bond and
gives (f).

Evidence for this mechanism came from the following
findings: (i) a f-deuterium shifted signal at C-24 [8¢ 156.92,
2A0¢(2H) —0.03] of (2a); (ii) the pro-S (C-27) and pro-R
(C-26) methyls at C-25 of (2b) appearing as a singlet and a
doublet (J 35 Hz), respectively; (iii) (3a) having C-27 labelled
by 13CD,H [8¢ 17.78, 'Ad(2H) —0.54]; (iv) a singlet C-27
and a doublet C-26 (J 72 Hz) in (3b); (v) (4b) having a singlet
C-26 (8¢ 19.61) and a doublet C-27 (5.18.98, J 35 Hz), the
latter being labelled by 13CD,H in (4a). The two deuterium
atoms at C-22 of (3a) and (4a) clearly indicate that these
sterols were not formed primarily through a A22(Z3)precursor.

The 2H and 13C distributions in the tetracyclic skeleton of
(3) and (4) were similar to those of the 24w«-ethylsterol,
sitosterol.3 1,2-Methyl migration (C-18 from C-14) and
1,2-hydride shifts (20-H from C-17 and 17-H from C-13)
during the cyclization from epoxysqualene were confirmed by
the singlet signals at C-14 and C-18 in (2b), (3b) and (4b), and
by the B-deuterium isotopically shifted signals at C-17 and
C-13in (2a), (3a), and (4a). 1,2-Methyl migration (C-32 from
C-8) and 1,2-hydride shift (8-H from C-9) were also verified by
the singlets, C-8 and C-32, in (2b), and the f-deuterium
isotopically shifted signal at C-9 [8¢ 20.02, 2Ad¢(?H) —0.09]
of (2a). Thus, the 8-2H observed in (2a) is evidence for
cycloartenol, not lanosterol, being the primary cyclization
product from epoxysqualene. The two deuterium atoms at
C-19 of (3a) and (4a) agree with the intermediacy of
cycloartenol. The retention of 5-2H in (3a) and (4a) demon-
strate that A7 was not formed via a A57 precursor.
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